Mechanistic Models Fit to Variable Temperature Calorimetric Data Provide Insights into Cooperativity.

نویسندگان

  • Elihu C Ihms
  • Ian R Kleckner
  • Paul Gollnick
  • Mark P Foster
چکیده

Allostery pervades macromolecular function and drives cooperative binding of ligands to macromolecules. To decipher the mechanisms of cooperative ligand binding it is necessary to define at a microscopic level the structural and thermodynamic consequences of binding of each ligand to its allosterically coupled site(s). However, dynamic sampling of alternative conformations (microstates) in allosteric molecules complicates interpretation of both structural and thermodynamic data. Isothermal titration calorimetry has the potential to directly quantify the thermodynamics of allosteric interactions, but usually falls short of enabling mechanistic insight. This is because 1) its measurements reflect the sum of overlapping caloric processes involving binding-linked population shifts within and between microstates, and 2) data are generally fit with phenomenological binding polynomials that are underdetermined. Nevertheless, temperature-dependent binding data have the potential to resolve overlapping thermodynamic processes, while mechanistically constrained models enable hypothesis testing and identification of informative parameters. We globally fit temperature-dependent isothermal titration calorimetry data for binding of 11 tryptophan ligands to the homo-undecameric trp RNA-binding Attenuation Protein from Bacillus stearothermophilus using nearest-neighbor statistical thermodynamic models. This approach allowed us to distinguish alternative nearest-neighbor interaction models, and quantifies the thermodynamic contribution of neighboring ligands to individual binding sites. We also perform conventional Hill equation modeling and illustrate how comparatively limited it is in quantitative or mechanistic value. This work illustrates the potential of mechanistically constrained global fitting of binding data to yield the microscopic thermodynamic parameters essential for deciphering mechanisms of cooperativity in a wide range of ligand-regulated homo-oligomeric assemblies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collecting variable-concentration isothermal titration calorimetry datasets in order to determine binding mechanisms.

Isothermal titration calorimetry (ITC) is commonly used to determine the thermodynamic parameters associated with the binding of a ligand to a host macromolecule. ITC has some advantages over common spectroscopic approaches for studying host/ligand interactions. For example, the heat released or absorbed when the two components interact is directly measured and does not require any exogenous re...

متن کامل

Finite size effects on calorimetric cooperativity of two-state proteins

Finite size effects on the calorimetric cooperatity of the folding-unfolding transition in two-state proteins are considered using the Go lattice models with and without side chains. We show that for models without side chains a dimensionless measure of calorimetric cooperativity κ2 defined as the ratio of the van’t Hoff to calorimetric enthalpy does not depend on the number of amino acids N . ...

متن کامل

Polymer principles of protein calorimetric two-state cooperativity.

The experimental calorimetric two-state criterion requires the van't Hoff enthalpy DeltaH(vH) around the folding/unfolding transition midpoint to be equal or very close to the calorimetric enthalpy DeltaH(cal) of the entire transition. We use an analytical model with experimental parameters from chymotrypsin inhibitor 2 to elucidate the relationship among several different van't Hoff enthalpies...

متن کامل

Effect of finite size on cooperativity and rates of protein folding.

We analyze the dependence of cooperativity of the thermal denaturation transition and folding rates of globular proteins on the number of amino acid residues, N, using lattice models with side chains, off-lattice Go models, and the available experimental data. A dimensionless measure of cooperativity, Omega(c) (0 < Omega(c) < infinity), scales as Omega(c) approximately N(zeta). The results of s...

متن کامل

Energetics of Protein Thermodynamic Cooperativity: Contributions of Local and Nonlocal Interactions

The respective roles of local and nonlocal interactions in the thermodynamic cooperativity of proteins are investigated using continuum (off-lattice) native-centric Gō-like models with a coarse-grained Ca chain representation. We study a series of models in which the (local) bondand torsion-angle terms have different strengths relative to the (nonlocal) pairwise contact energy terms. Conformati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 112 7  شماره 

صفحات  -

تاریخ انتشار 2017